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Abstract. We explain the results recently obtained for the damage-spreading behaviour in the
Bak–Sneppen (BS) model (Tamaritet al 1998Eur. Phys. J.B 1 545). We do this by relating the
BS model to a much simpler one, which includes many features of the BS model and provides a
clear explanation for the occurrence of power-law growth of the distance.

1. Introduction

A great deal of evidence has been put forward in recent years for the appearance of criticality
in nature. From biological evolution [2] to earthquakes [3], from surface growth [4] to fluid
displacement in porous media [5], a wide variety of phenomena exhibit scale invariance in
both, space and time. Scale invariance means that the correlation length in these systems
is infinite and consequently, a small (local) perturbation can produce a global (maybe even
drastic) effect. This possibility leads naturally to the study of the sensitivity to perturbations
in critical systems.

To study the propagation of local perturbations (damage spreading) in critical systems
one can borrow a technique from dynamical systems theory. Let us consider two copies
of the same dynamical system (let us say, for instance, a one-dimensional (1D) map), with
slightly different initial conditions. By following the dynamics of both copies and studying
the evolution in time of the ‘distance’d(t) between them, it is possible to quantify the effect of
the initial perturbation. Indeed, assuming the distanced(t) grows exponentially, and defining
the Lyapunov exponentλ via

d(t) = d0 exp(λt) (1)

three different behaviours can be distinguished, corresponding toλ being either positive,
negative or zero. The caseλ > 0 corresponds to the so-calledchaoticsystems, where the
extremely high sensibility to initial conditions leads to exponentially diverging trajectories. The
caseλ < 0, instead, characterizes those systems in which the dynamics has an attractor (such
as a fixed point or a limit cycle) and any initial perturbation is ‘washed out’ with exponential
rapidity.

The boundary case,λ = 0, admits, in turn, a whole class of functionsd(t). We will only
concern ourselves here with the case (common in critical systems)

d(t) ∼ tα (2)
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whereα is some exponent, characteristic of the system. The caseα > 0 corresponds to
weak sensitivity to initial conditions whileα < 0 corresponds to weak insensitivity to initial
conditions [6]. As an example, the reader is referred to [6], where this analysis is performed
for the logistic map at its critical point [7]. Moreover, in [6], the behaviour described by
equation (2) has been related to the non-extensivity of the entropy proposed in [7].

In a recent paper [1], a similar analysis was performed on the Bak–Sneppen (BS) model
[2]. Originally proposed to describe ecological evolution, this model has been paid a great
deal of attention due to its simplicity and the fact that it exhibits self-organised criticality [8].
Schematically, the BS model is defined on a lattice where at each timestep one site is chosen,
namely the one that fulfils a global constraint (minimum in some phase space)†. This site is
defined as theactive site. This dynamics leads to a non-Markovian process where the activity,
i.e. the position on the lattice of the active site, jumps on the lattice following a (correlated)
Lévy walk. Its critical properties allow us to describe its behaviour under perturbations via
equation (2), with

α = 0.32. (3)

In this paper, we explain the results obtained in [1], concerning the behaviour under
perturbations of the BS model. By comparing the BS model with a much simpler model, we
are able to explain the appearance of a power-law growth of the Hamming distanceD(t). As
we shall see, the particular stationary distribution of the variable does not play any role in the
determination of the exponentα in equation (2). What matters is, instead, the kind of Lévy
walk involved and the strength of the correlations. The extremal dynamics (i.e. the choice
of some extremal value in the system) is by definition non-local and as such has (until now)
prevented any analytic treatment of the model. This dynamics leads to avalanches of causally
connected events the distribution of which is scale free and therefore described by a power
law. Actually, as will be analysed later on, one can simplify the dynamics by considering
only some of the features of the model. Our program will therefore be the one of considering
simple models with a Ĺevy walk behaviour of the activity. For these models we can analytically
predict the exponentα thus providing a clear explanation for this behaviour, so far only studied
numerically for the BS model [1]. Finally, with the help of the theory developed on the basis
of these simple models, we will clearly show where the correlations enter and what their effect
is in terms of values ofα.

2. Damage-spreading in the ring

Let us start by considering a lattice ofN sites on a 1D ringR1. To each sitej we assign a
random numberfj , extracted from a uniform distribution between 0 and 1. We then consider
a ‘replica’R2, in which we introduce a perturbation by exchanging the positions of the values
of fk1 andfk2. We define as active the sitesk1 in R1 and (the randomly chosen site)k2 in R2,
namely those sites at which we have the same value off . It is clear that, from a statistical
point of view, both systemR1 and replicaR2 are described by the same distribution function.
This prescription corresponds, in a suitably defined phase space, to a small difference in the
initial conditions betweenR1 andR2 (see equation (7) below). Moreover, this procedure of
finding an active site and exchanging its position with another site taken at random along the
lattice, corresponds exactly to the one proposed in [1] for the BS model (other definitions
for the initial perturbation are considered elsewhere [10, 11]). The dynamics on the ring(s) is
defined as follows. At each timestep, an integer random numberx between 1 andN is chosen.

† Unless otherwise stated, all the results presented here correspond to a 1D lattice.
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Bearing in mind that our rings have periodic boundary conditions, the positions of the new
active sites at timet + 1 is then given by

k1(t + 1) = k1(t) + x (4)

k2(t + 1) = k2(t) + x (5)

on the ringsR1 andR2, respectively. On these active sites, the value of the variablesf is
changed, assigning to both of them the same random number (this corresponds to the choice
of the same sequence of random numbers in [1] or to the same thermal noise in usual damage
spreading calculations [9]).

As both systemR1 and replicaR2 evolve, we compute the Hamming distance, namely

D(t) = 1

N

N∑
j=1

|f 1
j − f 2

j |. (6)

Since this quantity has strong fluctuations, we will consider the average〈D(t)〉, over
realizations. In particular, att = 1, the average (initial) distance〈D(1)〉 can be obtained
from equation (6),

〈D(1)〉 = 2

N

∫ 1

0
df1df2η1(f

1)η2(f
2) |f 1− f 2| (7)

whereηi is the distribution function (att = 1) for the variablef i ∈ Ri . In this toy model,
both distributionsηi(f ) are the same, namely a uniform distribution inf i ∈ Ri . A simple
computation yields

〈D(1)〉 = 2

3N
. (8)

Applying a similar procedure, one can verify that for 1� t � N the distance grows linearly.
Indeed, let us defineσ(t) as the averaged number of different sites covered in one copy of the
system at time 1� t � N . Then, at timet only σ(t) sites have been changed and these are
the only ones that contribute to distance. From this consideration it follows that

〈D(t)〉 = 〈D(1)〉 σ(t) (9)

where the fact that both replica contribute to the distance on the same footing is taken into
account in equation (8). In the case of the ring, ifN � 1 and 1� t � N the system will
always choose a new site at each timestep, and thereforeσ(t) ∼ t (note that, in the 1D case
for this dynamics, this is the fastest possible growth of〈D(t)〉). This behaviour stops at times
t ∼ N where a crossover to a saturation regime appears. Clearly, aftert ∝ N timesteps each
site of the lattice has been covered at least once. Fort � N , almost all the lattice sites have
been covered and the two strings are made of the same random numbers shifted byk2 − k1.
Thus, the distance reaches a plateau, independent on the sizeN of the system, given by

〈D(t →∞)〉 =
∫ 1

0
df 1df 2ρ1(f

1)ρ2(f
2)|f 1− f 2| (10)

whereρi is the normalized distribution function (att = ∞) for the variablef i ∈ Ri . In
equation (10), for the particular case of the ring the distributions in the integral are given by
ρi = ηi . Applying equation (10) toR1 andR2 we finally obtain

lim
t→∞〈D(t)〉 =

1
3. (11)

Note that the same result can be obtained from equations (8), (9) onceσ = N is inserted. To
have an initial distance independent of the lattice size, we consider the ratio〈D(t)〉/〈D(1)〉.
For this ratio, however, the value of the plateau depends linearly onN , i.e.

〈D(∞)〉
〈D(1)〉 =

N

2
. (12)
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Figure 1. DistanceD(t) between the two replicas for three different sizesN for the uncorrelated
ring model.

In figure 1 we show the evolution in time of the ratio〈D(t)〉〈D(1)〉 , averaged over many
realizations, for different lattice sizes. The plateau reached fort →∞depends onN according
to equation (12). The exponentα = 1 obtained for this case from equation (9) can also be
obtained numerically with great accuracy. From a physical point of view, this power-law
behaviour originates in the ability of the system to cover the lattice. As we have seen, the
activity can jump anywhere on the lattice with probability 1/N . Thus the number of sitesj
with the samefj decreases linearly with time and〈D(t)〉 increases linearly with time. As a
consequence, the timeτ needed to reach the plateau scales with the lattice size asτ ∼ N .

Bearing in mind our goal of modelling the behaviour of the BS model, let us now consider
the case of Ĺevy walk-type activity jumps along the lattice. More precisely, the lengthx of
any jump is extracted from a power-law distribution function, namely

P(x) = (β − 1)x−β (13)

where the minimum jump isx = 1 and the jump can be to the left or to the right†.
As before, the position of the new active site is obtained by jumpingx sites from the

present one, i.e. the position of the new active site will be given by equations (4), (5), where
each copy of the system has its ownx. Thus, the values ofx are uncorrelated between the
two copies of the system. The new values off assigned to the active sites are the same. This
choice results in a different behaviour at the saturation regime.

In the random walk limit,β � 1 in equation (13), the distance equation (6), can be easily
computed by considering equation (9) together with the fact thatσ ∼ t1/2. This calculation
yields

〈D(t)〉 ∼ t1/2. (14)

† For finiteN , due to the periodic boundary conditions, one applies the restrictionx 6 N
2 .
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In the general caseβ > 1, there is still a power-law growth of the distance (6) for
intermediate times 1� t � N . The exponent in equation (2) can be obtained using the fact
that the mean-square distanceσ 2 covered by a Ĺevy walk behaves like

σ 2(t) ∼


t2 (1< β 6 2)
t4−β (2< β < 3)

t log t (β = 3)

t (β > 3)

(15)

in the long-time limit. As a consequence, one can also compute the so-called dynamical
exponentz defined throughτ ∼ Nz whereτ is the time needed for the distance (actually the
ratio 〈D(t)〉〈D(1)〉 ) to reach the plateau. This time is given by the time needed to cover all the lattice
sites, if finite size effects are not counted in. Comparison between equations (2), (9), (15)
yieldsz = 1

α
.

In this simple model we have excluded any kind of correlation between the values ofx

extracted from equation (13) and between the two replicas att = 1. Indeed, the dynamics
is given by a generalized random walk and therefore the power-law behaviour of the growth
is not related to the statistical properties of the system. This is in fact the idea behind our
toy model: we use it as a ‘black box’, not knowing what happens inside, we are only able to
observe a Ĺevy walk behaviour of the activity. Our model is, by conception, a trivial system
that has only one purpose i.e. that of showing what the consequences are, in the context of
damage spreading, of a power-law behaviour of the activity like the one observed in the BS
model.

As we shall see in the next section, the non-trivial properties of the self-organised critical
systems are hidden in the value of the exponentα in equation (2). Furthermore, the averaging
procedure leading from equation (6) to equation (9) plays a very important role in these non-
trivial systems.

Before moving onto the analysis of the BS model, let us discuss in more detail which terms
are contributing to the computation of〈D(t)〉 via equation (9). In the ring, we have defined
〈D(t)〉 by considering the behaviour ofσ(t), which is a physical quantity related only to the
behaviour of the activity in one single system. In general, considering that the two replica
might be correlated, we need to update equation (9) to

〈D(t)〉 = 〈D(1)〉 n̄cov(t) (16)

wheren̄cov(t) is the average number ofdifferentsites covered by both system and copy. More
precisely, suppose that at timet , the activity has coveredσ1 andσ2 different sites inR1 andR2

respectively. Then, the function̄ncov(t) is given by

n̄cov(t) = 〈σ1 + σ2 − σ1,2〉 (17)

whereσ1,2 represents the number of sites covered in both systems (i.e. thecovering overlap
between system and copy). In the case of the ring, for largeN andt � N , the overlap on the
r.h.s. of equation (17) is empty (σ1,2 ≡ 0) and equation (16) reduces to equation (9). In the
case of the BS model instead, this intersection cannot be empty even in the thermodynamic
limit. As a consequence, the exponents predicted from equation (15) have to be considered as
an upper bound for those observable in systems with non-trivial correlations.

3. Damage spreading in the BS Model

As mentioned above, in its simplest version the BS model describes an ecosystem as a collection
of N species on a 1D lattice. To each species corresponds a fitness described by a numberf
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between 0 and 1. For simplicity, one considers periodic boundary conditions. The initial state
of the system is defined by assigning to each sitej a random fitnessfj chosen from a uniform
distribution. The dynamics proceeds in three basic steps.

(1) Find the site with the absolute minimum fitness on the lattice (the active site) and its two
nearest neighbours.

(2) Update the values of their fitnesses by assigning to them new random numbers from a
uniform distribution.

(3) Return to step 1.

After an initial transient that will be of no interest to us here, a non-trivial critical state is
reached. This critical state, characterised by its statistical properties, can be understood as the
fluctuating balancebetween two competing ‘forces’. Indeed, while the random assignation of
the values, together with the coupling, acts as an entropic disorder, the choice of the minimum
acts as an ordering force. As a result of this competition, at the stationary state the majority
of the fj have values above a certain thresholdfc = 0.667 02(1) [2]. In other words, the
distribution function of thefj ’s is given by

η1(f ) = 1

1− fc 2(f − fc) (18)

where2(f ) is the Heaviside function. Only a few will be belowfc, namely those belonging to
the running avalanche (see [2, 12] for a detailed discussion). Proceeding by analogy with the
previous cases, once the system is at the critical state we produce two identical copiesB1 andB2

and find the minimum (the active site). Then, inB2 we swap the value of the minimum fitness
with the fitness of some other site chosen at random (note that ifN is big enough, the fitness
in the other site will certainly be above threshold). After that, the evolution of the Hamming
distance given by equation (6) is studied. In the evolution of both system and copy the same
random numbers are used. Here, the length of the jumps in the position of the active site
follows a power-law distribution given by equation (13) withβ ∼ 3.23 [2]. At variance with
the case of the ring discussed above, we cannot expect the behaviour shown in equations (9)
and (15). Indeed, in the BS model the jumps posses strong spatial correlations, with large
probability of returning to sites already covered in previous timesteps. As a consequence, the
behaviour of the number of different sites covered in one single system cannot be given by
equation (15) but leads toσ(t) ∼ tµ for t � 1 [2], withµ = 0.4114±0.0020 [13]. Moreover,
as we consider the two copiesB1 andB2 we realize that the two systems are also strongly
correlated initially and consequently, one obtains an even smaller exponent† leading to

〈D(t)〉 ∼ tα=0.32. (19)

As we mentioned at the end of section 2, the behaviour of equation (19) can be understood
in the framework of equation (16). In fact, the decrease in the value ofα is given by the
appearance ofσ1,2 6= 0 in equation (16). This is due to two phenomena. On the one hand we
have avalanches. Indeed, when producing the initial perturbation inB2, we will still have the
old avalanche from which we have taken away the active site and put it somewhere else. This
newly placed active site will start a new avalanche somewhere else but the activity will soon
have to go back to the old (unfinished) avalanche. In the meantime, inB1 the old avalanche
has had some development. Therefore, chances to increase the number of identical sites in
both systems are built in from the very beginning and the increase inD(t) is slower.

† A new set of measurements, to be presented elsewhere [11], furnish an extrapolation for bigN of the exponentα
to be close to 0.4.
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On the other hand, the fact that we are using the same sequence of random numbers
implies that, if the system is big enough, the absolute minimum in one system is also the
absolute minimum in the copy. Therefore, if the absolute minimum is among those sites which
have not yet been covered by the activity, the three terms in the r.h.s. of equation (17) will
have the same behaviour. If the minimum is instead one of the newer values put in the system
after perturbation, its position on the lattice may be different in the two replica but the three
functions in the r.h.s. of equation (17) grow slowly or even do not grow at all. This observation
is confirmed by the irregular behaviour ofD(t) in just one single realization. In fact, it is the
averaging procedure that finally produces a smooth curve. It should be noted that, as it is clear
from its definition, the behaviour of the intersection is strongly correlated to the behaviour of
the other two sets and therefore the average in the r.h.s. cannot be split into the sum of the
independent averages. As a consequence we should expect a smaller exponent with respect to
the one obtained forσ(t).

The initial distance can be computed using equation (7). To do this we need the distribution
function of the value of the minimum. Extensive numerical simulations indicate that this
distribution can be approximated by

η2(f ) = (3− 9
2f )2(

2
3 − f ) (20)

where the threshold has been put equal to2
3. Inserting (20) and (18) in equation (7) we obtain

〈D(1)〉 ∼ 11
9N . Since〈D(t → ∞)〉 takes into account all sites on the same footing, this

saturation value can be obtained from equation (10) withρ1 = ρ2 = η1. The distributionη1

comes from equation (18), and the saturation value is〈D(t →∞)〉 ∼ 1
9. Therefore, as in the

case of the ring, the saturation value does not depend on the size of the system while the initial
distance does. Thus, the normalized distance reaches a plateau that must scale withN , as our
numerical simulations show (see figure 2).

Figure 2. Scaling of the long-time plateauD∗ = 〈D(∞)〉〈D(1)〉 as a function of the number of sitesN
for the BS model. The best fit yields an exponent of 1.03(4).
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Figure 3. Collapse plot of the data for the evolution of the distance, in the BS case. The best fit
yieldsα = 0.32(3) andz = 3.0(2).

Coming back to the dynamical exponentz, we find that it still follows the prediction
z = 1/α as in the case of the ring. For the BS model one obtains, following the above
described prescription,z ∼ 3.12, instead ofz ∼ 1.6 as determined in [1]. This valuez ∼ 3.12
coincides reasonably well with the one obtained from the collapse plot (figure 3). The reason
for the discrepancy between our results and those presented in [1] can be traced back to the
effects of time-rescaling on the (normalized) growth function. Indeed, let us assume we use
a different timescale, and consider the case in which we make a measure ofD(t) everyν
timesteps (instead of every timestep), whereν is distributed according to a certain function
P(ν). The rescaled distancẽD(t) will be given by

D̃(t) =
∫

dν P (ν)D((t − 1)〈ν〉 + ν) (21)

where 〈ν〉 = ∫
dννP (ν) is the average number of timesteps between two consecutive

measurements. The choice made in [1] corresponds toP(ν) = δ(ν − N). It is easy to
see that, in this case, the growth exponent forD̃(t) is still α, but the measured dynamical
exponent is given by 1/α− 1. In principle, one could imagine more complicated distributions
P(ν) for the measuring time. In particular, ifP(ν) did not have a finite first moment (as would
be the case, for instance, ifP(ν) corresponded to the avalanche distribution) equation (21)
would yieldD̃(2) ≈ N , i.e. the rescaled distance would saturate almost immediately†.

At this point, it is worth discussing what happens in higher dimensions. The high-
dimensional BS model has been extensively studied in [14], where the behaviour of the

† Since, for finiteN every distribution has a cut-off, and therefore every moment is finite, this line of reasoning
applies only in the limitN →∞. A more detailed analysis of this point will be presented elsewhere [11].
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exponentµ for the growth of the quantityσ(t) has been computed until the mean-field regime
µ = 1 was reached. In the framework of the damage spreading, taking into account the
correlations as discussed above, one expects the exponentα to follow a similar pattern, reaching
the valueα = 1 in the mean-field case. These mean-field results can also be obtained in the
random-neighbours case [15]. However, from the point of view of damage spreading, the
random nearest-neighbour case presents a complication. There is an ambiguity in the choice
of the neighbours. Indeed, their absolute positions on the lattice should be either the same in
the two copies of the system or taken at random in an uncorrelated fashion. In both cases,
each one of the two copies will behave normally, but the behaviour of the distance will be
completely different. Indeed, in the first case the distance between the two systems will never
grow, while in the latter case the behaviour of the distance resembles that of the ring with
uniformly distributed jumps.

4. Conclusions

Summarizing, we have shown that the power-law behaviour of the distance equation (2)
originates in the behaviour of the mean-squared distance covered by the activity. This
relationship has several consequences. First, one hasα 6 1. Secondly, the internal correlations
of the jumps, governed by equation (13), together with the strong correlations between the two
copies, can severely slow down the growth of〈D(t)〉. This leads, in turn, to exponents for the
distance that are smaller than those predicted by equation (15). Since an analytic derivation
of the exponents characterising the critical properties of the BS model is still lacking, our
work had to be based, in part, on numerical results. From that starting point, after rewriting
equation (2) in the more appropriate form given by equations (16), (17), we have been able to
shed some light on the mechanisms leading to equation (2). In this framework, the reason for
the appearance of a plateau can be easily understood and moreover, a prediction for its value
can be made.

As a final point, we would like to emphasize that our analysis assumes that the distribution
of the variablesf does not change during the measurement of〈D(t)〉 neither in the BS case
nor in the case of the ring (we exclude the transient). This need not be so, that is one can ask
oneself what happens in critical systems in which there is no steady distribution. This question
is currently being addressed.
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